

von Willebrand disorder – update on Treatment and Care

Prof James O'Donnell

Overview

- **1. Introduction to von Willebrand disorder**
- 2. Best practise for VWD treatment and care 2023
- **3. Important VWD questions we need to answer**
- 4. New advances in VWD treatment the future
- **5.** Conclusions

Overview

1. Introduction to von Willebrand disorder

2. Best practise for VWD treatment and care – 2023

3. Important VWD questions we need to answer

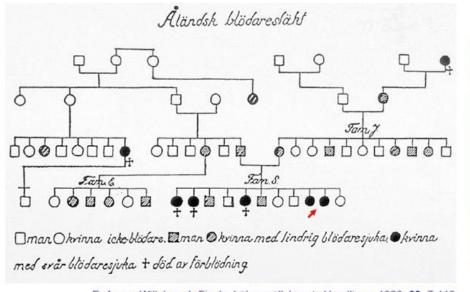
4. New advances in VWD treatment – the future

5. Conclusions

Dr Erik von Willebrand

Erik Adolf von Willebrand (1870-1949)

- 13 year old girl fatal bleeding with 4th period
- Family with significant bleeding from Åland islands

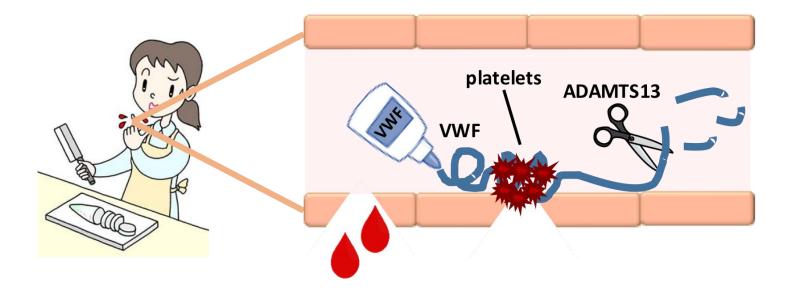

von Willebrand factor



Åland archipelago consists of ~300 islands

- Autonomous region of Finland
- Language Swedish
- Population 28,000

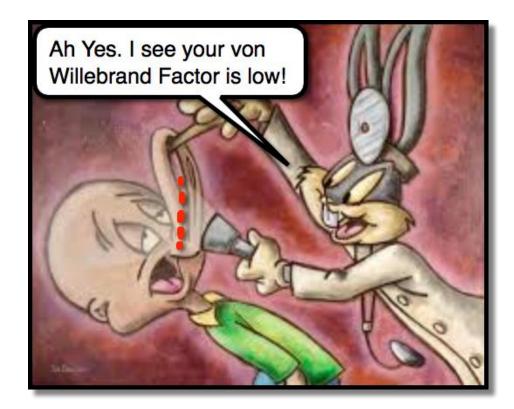
Von Willebrand disease



E. A. von Willebrand, Finska Läkaresällskapets Handlingar 1926; 68: 7-112

- . TROSSAERT, DIU Lyon 2012
- Interesting things unlike haemophilia
 - Both males and females affected
 - Heavy periods & nose bleeds rather than joint bleeding

What is von Willebrand factor ?


von Willebrand Disorder

Definition:

A defect in VWF that causes a bleeding tendency

- a reduced amount of VWF in the blood;
- a VWF protein that does not work properly in clotting

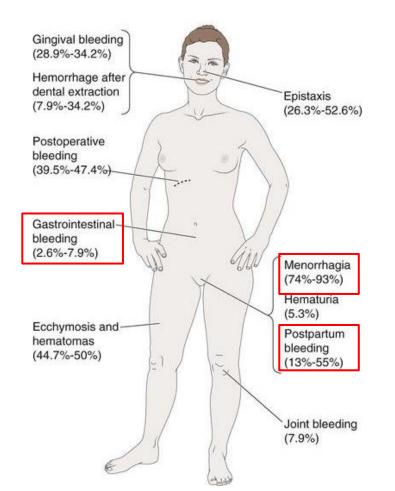
Patients with VWD are at increased risk for bleeding

Why is VWD important ?

Commonest inherited bleeding disorder

- 1 in 1000 people have low VWF levels and significant bleeding
- Males & females equal chance of inheriting
- All races affected

Bleeding in VWD

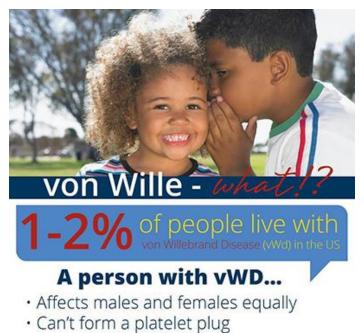

Characterised by muco-cutaneous bleeding


- Nose bleeds / gum bleeding
- Easy bruising
- Menorrhagia
- Bleeding after trauma / dental / surgery

Rare patients with type 3 VWD

– Joint & muscle bleeds

Bleeding in VWD



In spite of its importance – VWD isn't well known !

von Willebrand Disease

NATIONAL HEMOPHILIA FOUNDATION for all bleeding disorders

- Is not contagious
- Has treatment, but no cure

Diagnosis of VWD can be difficult

Plasma VWF levels vary widely in normal population -

Influenced by variety of factors

- Age
- Ethnicity
- Stress
- Exercise
- Infection
- Inflammation
- Malignancy
- Pregnancy

ABO blood group influences VWF levels

ABO type	VWF levels
0	74 %
Α	106 %
В	117 %
AB	123 %

VWD classification overview

VWD sub-classified as either quantitative or qualitative

Quantitative VWD accounts for ≈ 75% cases

- Proportionate VWF protein and function

Quantitative VWD sub-classification

• Normal plasma VWF:Ag levels 50 – 150 IU/dL

Quantitative VWD	
1. Type 1 VWD	More significant reduction in plasma VWF:Ag levels (< 50 IU/dL)
2. Type 3 VWD	Virtually complete deficiency of VWF (<3 IU/dL)

VWD Classification 2019

Qualitative VWD accounts for ≈ 25% cases

- Characterized by production of a dysfunctional VWF molecule
 - Disproportionate reduction in VWF function compared to protein

Qualitative VWD sub-classification

• Subdivided on the basis of specific phenotypic characteristics

Qualitative VWD	
Type 2A	Qualitative VWF variants with reduced platelet adhesion and loss of HMW multimers
Type 2M	Qualitative VWF variants with reduced platelet adhesion not caused by loss of HMW multimers
Type 2B	Qualitative VWF variants with increased affinity for platelet Gplb α
Type 2N	Qualitative VWF variants with decreased affinity for FVIII

Overview

1. Introduction to von Willebrand disorder

2. Best practise for VWD treatment and care - 2023

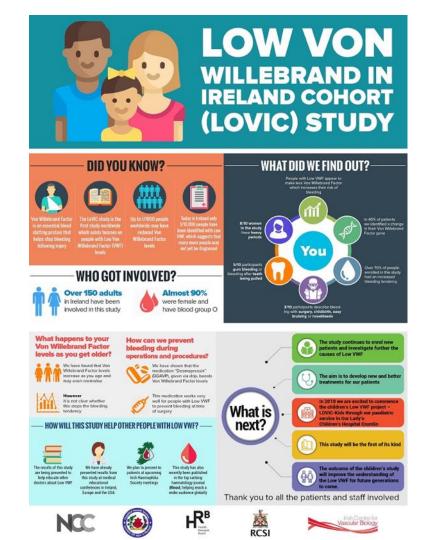
3. New advances in VWD treatment – the future

4. Conclusions

VWD studies in recent years

VWD studies

- EU MCMDM-1VWD
- UK-HCDO
- Canada
- Italy
- USA Zimmerman program
- Willebrand in the Netherlands (WiN) study
- Ireland LoVIC study


VWD papers

• PubMed search on 'VWD' ≈ 14,000 papers

Low VWF Irish Cohort (LoVIC) study

Low Von Willebrand in Ireland Cohort study

June 2015

Prospective longitudinal cohort study

> 250 patients with mild to moderate reductions in plasma VWF levels

Low Von Willebrand in Ireland Cohort study

Sold (S)

jth

Regular Article

THROMBOSIS AND HEMOSTASIS

Novel insights into the clinical phenotype and pathophysiology underlying low VWF levels

Michelle Lavin,^{1,2,*} Sonia Aguila,^{2,*} Sonja Schneppenheim,³ Niall Dalton,² Kenneth L. Jones,⁴ Jamie M. O'Sullivan,² Niamh M. O'Connell,¹ Kevin Ryan,¹ Barry White,¹ Mary Byrne,¹ Marie Rafferty,¹ Mairead M. Doyle,¹ Margaret Nolan,¹ Roger J. S. Preston,⁵ Ulrich Budde,³ Paula James,⁶ Jorge Di Paola,⁴ and James S. O'Donnell^{1,2}

THROMBOSIS AND HEMOSTASIS

Increased galactose expression and enhanced clearance in patients with low von Willebrand factor

Regular Article

Sonia Aguila).** Michelle Lavin,^{1,2}* Niali Dalton,¹ Sean Patmore,¹ Alain Chion,¹ George D. Trahan,³ Kenneth L. Jones,³ Catriona Keenan,² Teresa M. Brophy,² Niamh M. O'Connell,² Kevin Ryan,² Mary Byrne,² Margaret Nolan,² Anjali Patel,^{1,2} Roger J. S. Preston,¹ Paula James,⁴ Jorge Di Paola,³ Jamie M. O'Sollivan,² and James S. O'Donnell²

STIMULUS REPORT

Solo advances

Enhanced VWF clearance in low VWF pathogenesis: limitations of the VWFpp/VWF:Ag ratio and clinical significance

Dearbha Doherty,^{1,2} Michelle Lavin,^{1,2} Mary Byrne,¹ Margaret Nolan,¹ Jamie M. O'Sullivan,² Kevin Ryan,¹ Niamh M. O'Connell,¹ Sandra L. Haberichter,^{3,6} Pamela A. Christopherson,³ Jorge Di Paola,⁶ Paula D. James,⁷ and James S. O'Donnell,^{1,2,8} on behalf of the Zimmerman Program Investigators

How I Treat

How I treat low von Willebrand factor levels

Michelle Lavin and James S. O'Donnell

REGULAR ARTICLE

Solood advances

Significant gynecological bleeding in women with low von Willebrand factor levels

ORIGINAL ARTICLE

Management of elective procedures in low von Willebrand factor patients in the LoVIC study

Dearbhla Doherty^{1,2} | Michelle Lavin^{1,2} | Jamie M. O'Sullivan² | Kevin Ryan¹ | Niamh M. O'Connell¹ | Alison Dougall^{1,3} | Mary Byrne¹ | Marie Rafferty¹ | Mairead M. Doyle¹ | Jorge Di Paola⁴ | Paula D. James⁵ | James S. O'Donnell^{1,2,6} •

Zimmerman Program on von Willebrand disease biology

National Heart, Lung, and Blood Institute

Project Program Grant (PPG) award

Total funding: \$12,000,000

Principal Investigators Prof. Bob Montgomery – Blood Center Wisconsin, USA Prof. David Lillicrap – Queens University, Kingston, Canada Prof. James O'Donnell - RCSI

Expert guidelines on VWD

GUIDELINES

US NHLBI 2008

von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA)¹

W. L. NICHOLS,* M. B. HULTIN,† A. H. JAMES,‡ M. J. MANCO-JOHNSON,§ R. R. MONTGOMERY,¶ T. L. ORTEL,** M. E. RICK,†† J. E. SADLER,‡‡ M. WEINSTEIN§§ and B. P. YAWN¶¶

Principles of care for the diagnosis and treatment of von Willebrand disease

Giancarlo Castaman, $^{\tt 1}$ Anne Goodeve, $^{\tt 2}$ and Jeroen Eikenboom, $^{\tt 3}$ on behalf of the European Group on von Willebrand disease (EUVWD)

⁴Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy; ²Haemostasis Research Group, Department of Cardiovascular Science, University of Sheffield, United Kingdom; ³Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands

UKHCDO 2014

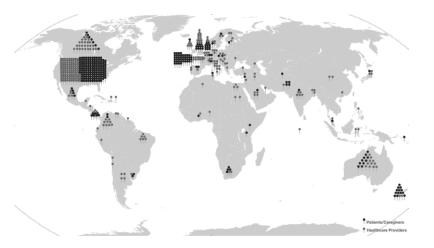
EUVWD 2013

The diagnosis and management of von Willebrand disease: a United Kingdom Haemophilia Centre Doctors Organization guideline approved by the British Committee for Standards in Haematology

Mike A. Laffan,¹ Will Lester,² James S. O'Donnell,³ Andrew Will,⁴ Robert Campbell Tait,⁵ Anne Goodeve,⁶ Carolyn M. Millar¹and David M. Keeling⁷

Joint initiative to update VWD guidelines

- Clinicians / scientists interested in VWD assembled into 2 panels
- Strong patient input into both panels



An international survey to inform priorities for new guidelines on von Willebrand disease

Mohamad A. Kalot¹ | Mohammed Al-Khatib¹ | Nathan T. Connell² | Veronica Flood³ | Romina Brignardello-Petersen⁴ | Paula James⁵ | Reem A. Mustafa^{1,4} | For the VWD working group

Survey to identify topics of highest importance to stakeholders

- 601 responses -
- 49% patients / caregivers
- 51% healthcare providers

VWD guidelines methodology

Highest priority topics identified were:

- Diagnostic criteria / classification
- Bleeding assessment tools
- Treatment options for women and surgical patients

Based on survey responses - developed a series of PICO questions

- 10 questions addressed by Diagnosis panel
- 12 questions addressed by Management panel

Systematic review of evidence

- strict methodology led by University of Kansas

S blood advances

ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease

Paula D. James,¹ Nathan T. Connell,² Barbara Ameer,^{3,4} Jorge Di Paola,⁵ Jeroen Eikenboom,⁶ Nicolas Giraud,⁷ Sandra Haberichter,⁸ Vicki Jacobs-Pratt,⁹ Barbara Konkle,^{10,11} Claire McLintock,¹² Simon McRae,¹³ Robert R. Montgomery,¹⁴ James S. O'Donnell,¹⁵ Nikole Scappe,¹⁶ Robert Sidonio Jr,¹⁷ Veronica H. Flood,^{14,18} Nedaa Husainat,¹⁹ Mohamad A. Kalot,¹⁹ and Reem A. Mustafa¹⁹

ASH ISTH NHF WFH 2021 guidelines on the management of von Willebrand disease

Nathan T. Connell,^{1,*} Veronica H. Flood,^{2,*} Romina Brignardello-Petersen,³ Rezan Abdul-Kadir,⁴ Alice Arapshian,⁵ Susie Couper,⁶ Jean M. Grow,⁷ Peter Kouides,⁸ Michael Laffan,⁹ Michelle Lavin,¹⁰ Frank W. G. Leebeek,¹¹ Sarah H. O'Brien,¹² Margareth C. Ozelo,¹³ Alberto Tosetto,¹⁴ Angela C. Weyand,¹⁵ Paula D. James,¹⁶ Mohamad A. Kalot,¹⁷ Nedaa Husainat,¹⁷ and Reem A. Mustafa¹⁷

ASH ISTH NHF WFH 2021 guidelines on the diagnosis of VWD

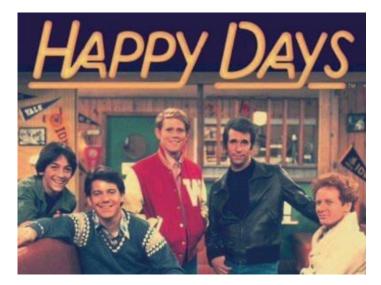
- **Rec 1** Panel recommend use of BAT in primary care.
- Rec 2 Panel suggest no need for BAT in patients referred to specialist centre.
- Rec 3 Panel suggest no need for BAT in patients with a family history.
- **Rec 4** Panel suggest newer VWF activity assays (VWF:Gp1bM / R) over VWF:RCo.
- **Rec 5** Panel suggest reconsidering diagnosis where VWF levels normalize with age.
- **Rec 6** Panel recommend type 1 VWD diagnosis of VWF < 30 or VWF 30-50 IU/dl with bleeding.

Rec 7- Panel suggest desmopressin trial with 1 and 4 hour tests rather than VWFpp/VWF:Ag ratio.

- Rec 8 Panel suggest VWF:Ac/VWF:Ag ratio cut off of 0.7 for type 2 VWD subtyping.
- Rec 9 Panel suggest either multimer analysis or VWF:CB/VWF:Ag for type 2 VWD.

Rec 10 - Panel suggest genetic testing over low dose RIPA for type 2B VWD. **Rec 11** - Panel suggest wither VWF:FVIIIB or genetic testing for type 2N VWD.

ASH ISTH NHF WFH 2021 guidelines on the management of VWD


- **Rec 1** Panel suggest use of long term prophylaxis for patients with severe frequent bleeds.
- Rec 2 Panel suggest performing a desmopressin trial in VWD patients.
- Rec 3 Panel suggest antiplatelet or anticoagulant therapy for VWD with CVD.
- **Rec 4** Panel suggest target FVIII & VWF:Ac > 50 IU/dL for min 3 days after major surgery.
- **Rec 5** Panel suggest desmopressin or concentrate and TA for minor surgery.
- Rec 6 Panel suggest OCP / Mirena coil / TA over desmopressin for HMB.
- Rec 7- Panel suggest target VWF:Ac 50-150 IU/dL for neuraxial anesthesia.
- Rec 8 Panel suggest postpartum TA in type 1 VWD.

State of the Art for VWD in 2023 ...

ASH ISTH NHF WFH 2021 guidelines

• Exemplar model of how guidelines should be produced

Two new guidelines based on > 13,000 peer-reviewed publications

ASH ISTH NHF WFH 2021 guidelines on the diagnosis of VWD

- **Rec 1** Panel recommend use of BAT in primary care.
- **Rec 2** Panel suggest no need for BAT in patients referred to specialist centre.
- Rec 3 Panel suggest no need for BAT in patients with a family history.
- **Rec 4** Panel suggest newer VWF activity assays (VWF:Gp1bM / R) over VWF:RCo.
- **Rec 5** Panel suggest reconsidering diagnosis where VWF levels normalize with age.
- **Rec 6** Panel recommend type 1 VWD diagnosis of VWF < 30 or VWF 30-50 IU/dL with bleeding.

Rec 7- Panel suggest desmopressin trial with 1 and 4 hour tests rather than VWFpp/VWF:Ag ratio.

- Rec 8 Panel suggest VWF:Ac/VWF:Ag ratio cut off of 0.7 for type 2 VWD subtyping.
- Rec 9 Panel suggest either multimer analysis or VWF:CB/VWF:Ag for type 2 VWD.

Rec 10 - Panel suggest genetic testing over low dose RIPA for type 2B VWD. **Rec 11** - Panel suggest either VWF:FVIIIB or genetic testing for type 2N VWD.

ASH ISTH NHF WFH 2021 guidelines on the management of VWD

- **Rec 1** Panel suggest use of long term prophylaxis for patients with severe frequent bleeds.
- **Rec 2** Panel suggest performing a desmopressin trial in VWD patients.
- Rec 3 Panel suggest antiplatelet or anticoagulant therapy for VWD with CVD.
- **Rec 4** Panel suggest target FVIII & VWF:Ac > 50 IU/dL for min 3 days after major surgery.
- **Rec 5** Panel suggest desmopressin or concentrate and TA for minor surgery.
- Rec 6 Panel suggest OCP / Mirena coil / TA over desmopressin for HMB.
- **Rec 7** Panel suggest target VWF:Ac 50-150 IU/dL for neuraxial anesthesia.
- Rec 8 Panel suggest postpartum TA in type 1 VWD.

Interpretation of strong and conditional recommendations

	Strong recommendation 'The panel recommends…'	Conditional recommendation <i>'The panel suggests…'</i>
For patients	Most individuals want the intervention	A majority of individuals would want the intervention but many would not.
For clinicians	Most individuals should follow the recommended course of action	Different choices will be appropriate for individual patients depending on values and preferences. Need for shared decision making.

James *et al*, Blood Adv 2021; 5:280

Guidelines serve to highlight the critical need for further research in the VWD field

	Strong recommendation 'The panel recommends'	Conditional recommendation <i>'The panel suggests'</i>	
For researchers	The recommendation is supported by credible research that make additional research unlikely to alter the recommendation.	 The recommendation is likely to be strengthened by additional research Helps to identify possible research gaps. 	

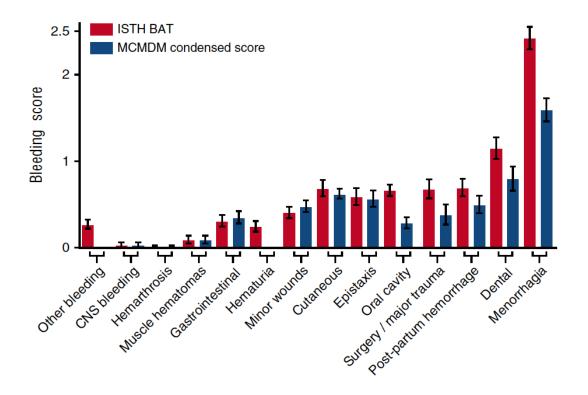
What are the key gaps in VWD understanding ?

Overview

1. Introduction to von Willebrand disorder

2. Best practise for VWD treatment and care – 2023

3. Important VWD questions we need to answer

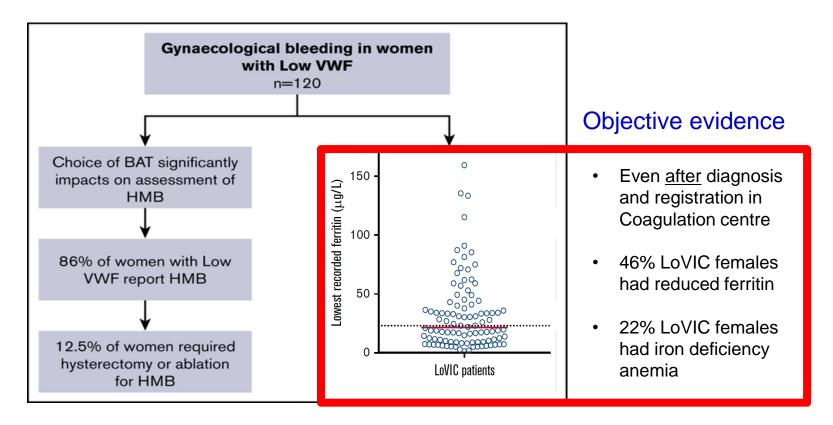

4. New advances in VWD treatment – the future

5. Conclusions

1. Why is heavy menstrual bleeding & post-partum hemorrhage such a problem in VWD ?

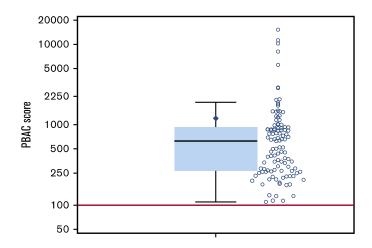
HMB and PPH in Irish women with mild to moderate reductions in VWF levels

LOVIC study, Blood 2017


HMB in women with Low VWF – clinical significance

Of the LoVIC patients with menorrhagia

- 67% had been treated with hormonal therapy
- 36% had required treatment with iron


- 24% with significant menorrhagia underwent Dilation and Curettage (D&C)
- 8% had undergone a hysterectomy for menorrhagia

Menstrual bleeding in VWD is of clinical significance

HMB in Low VWF is of clinical significance

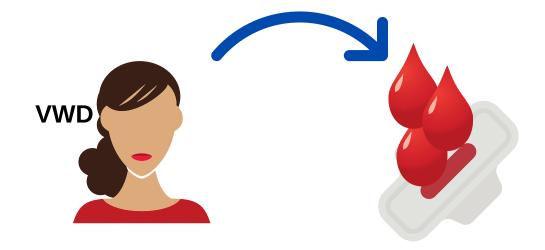

- 111 post-menarchal adolescent females all aged < 21 years
- Low VWF levels 30-50 IU/dL

Table 2. Bleeding complications in adolescents with lowVWF-associated HMB

Bleeding complication	n/N (%)
Iron deficiency (ferritin <20 ng/mL)	62/108 (60)
Anemia (hemoglobin <12 g/dL)	23/110 (21)
Red blood cell transfusion	13/108 (12)
Hospitalization for HMB	11/109 (10)

HMB is common in women with VWD

Up to 80% of women with VWD experience HMB^{1,2,3}

~50% have depleted iron stores and irondeficiency anemia¹

Ragni Am Soc Hematol Educ Program 2019
 Lavin et al, Blood Advances 2018
 Byams et al, Haemophilia 2011

VWD is common in women with HMB

Adult HMB clinics = 13% VWD¹

Adolescents $=18^2 - 35\%^3$

? hemostatic screening

Shankar et al. *Br J Obstet Gynae.* 2004
 O'Brien et al, *J Pediatr Adolesc Gynecol*, 2019
 Mikhail et al *Haemophilia* 2007

HMB – Socio-economic burden

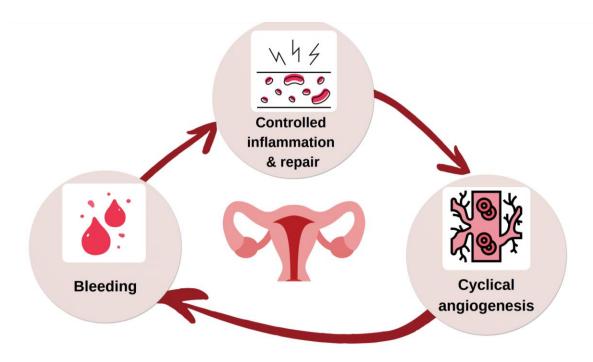
USA alone

- 3 million GP visits per annum
- 1.8 million prescriptions per annum
- 125,000 hysterectomies per annum
- 35,000 EA procedures per annum (2000)
- TOTAL direct costs > \$1 billion pa (conservative !)

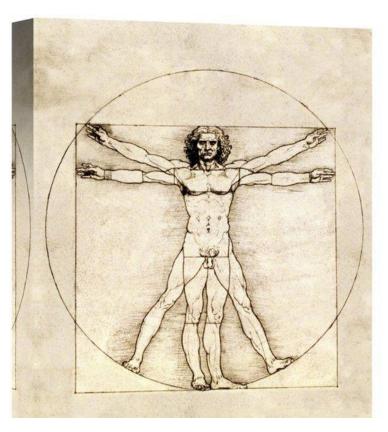
HMB – Socio-economic burden

USA alone

- 3 million GP visits per annum
- 1.8 million prescriptions per annum
- 125,000 hysterectomies per annum
- TOTAL direct costs > \$1 billion pa (conservative !)


Indirect costs

- HMB associated with 3.6 weeks fewer work per year
- Cost \$1692 pa (2005)
- Lower estimate of prevalence (10%) = 7.2 million women with HMB in USA
 \$12 billion per year
- Higher estimate of prevalence (30%) = 21.6 million women with HMB in USA
 > \$36 billion per year


HMB is more common in women with VWD compared to other bleeding disorders

Bleeding disorder	VWD	Carriers < 40 IU/dL	Carriers > 40 IU/dL	Platelet function defect	Other bleeding disorder
Reported HMB	70%	51%	41%	57%	54%

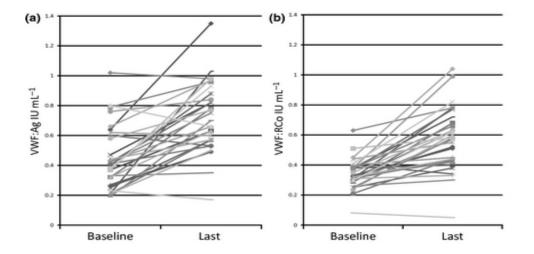
Heavy menstrual bleeding

New biological roles for VWF beyond hemostasis

INFLAMMATION

ANGIOGENESIS

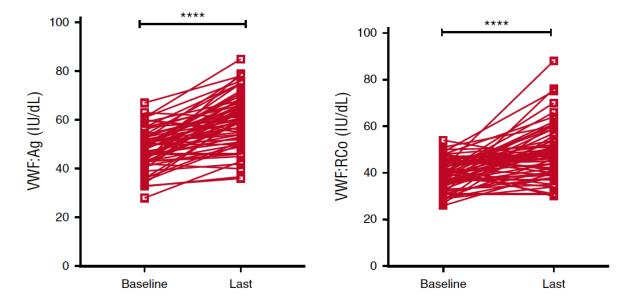
WOUND HEALING


Cell proliferation

2. What happens as persons with VWD get older ?

Age influences plasma VWF levels

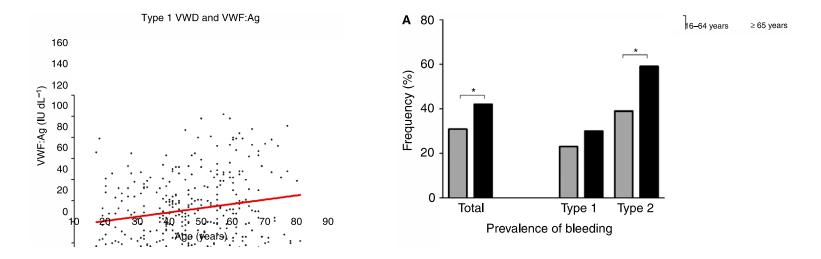
• Plasma VWF levels increase in normal population with age (> 10IU/dL per decade)



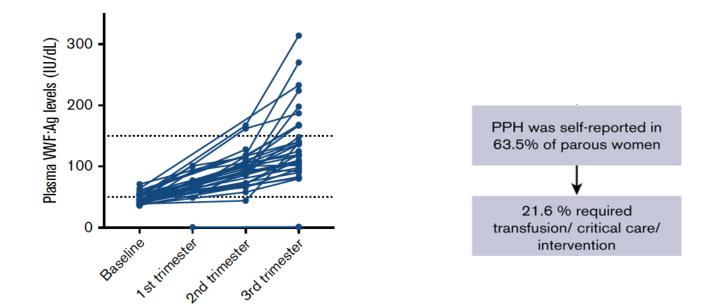
Plasma VWF levels increase with age in some patients with VWD

- 31 VWD– followed for > 5 years (mean 11 years)
- 18/31 patients had VWF levels increased into normal range
- No age-related increase in type 2 VWD (Sanders et al, JTH 2014)

Rydz et al, Hphilia 2015; 21:636

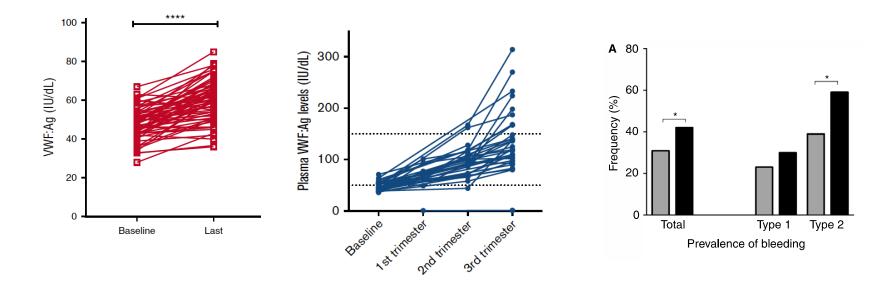

Plasma VWF levels increase into the normal range with ageing in some Low VWF patients

- 64 VWD patients with Low VWF followed for > 5 years (mean 8.5 years)
- 29 patients corrected to within the normal VWF levels


Bleeding phenotype is not necessarily corrected in VWD patients despite age-related *'normalization'* in VWF levels

• WiN study – patient reported bleeding episodes in the year preceding inclusion and during life

Not necessarily associated with a correction in bleeding


Plasma VWF levels increase into 'normal' range during pregnancy in majority of LoVIC patients

• Not necessarily associated with a correction in bleeding phenotype

LoVIC, Blood Advances 2018

Management of bleeding and hemostatic challenges following 'normalization' of VWF levels ?

- How to define optimal therapeutic targets ?
- May differ for individual patients ?

LoVIC, Blood 2017; WIN, J Thromb Haemostas 2014

Overview

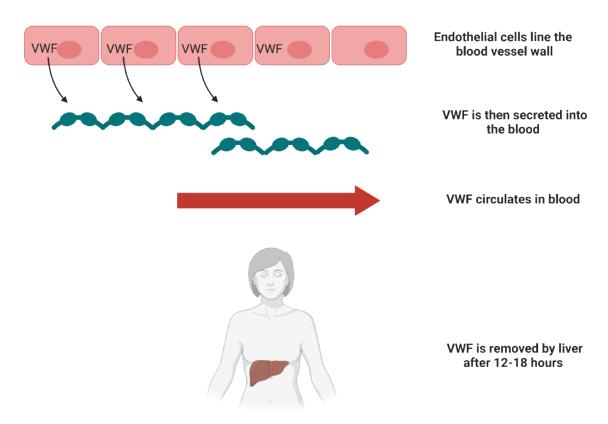
- **1. Introduction to von Willebrand disorder**
- **2. Best practise for VWD treatment and care 2023**
- 3. Important VWD questions we need to answer
- **4. New advances in VWD treatment the future**
- **5.** Conclusions

Treatment of patients with VWD

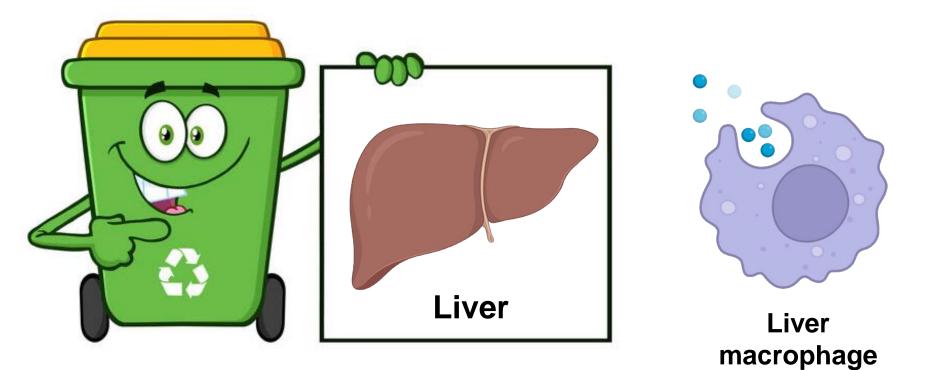
Options

- 1. Antifibrinolytics
 - Tranexamic acid / Aminocaproic acid
- 2. Desmopressin / DDAVP
- 3. Plasma-derived VWF containing concentrates
- 4. Platelet transfusion
- 5. Adjunctive therapies
 - Oral contraceptive / Intrauterine contraceptive
- 6. Recombinant VWF
 - VONVENDI® or VEYVONDI® Takeda

Treatment for VWD has lagged behind advances in the hemophilia field

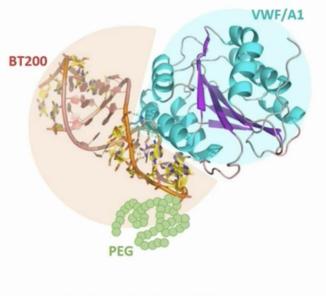

<u>Hemophilia A</u>		Von Willebrand disease
Cryoprecipitate	1960s	Cryoprecipitate
1.		1
Intermediate-purity concentrates	1970s	Intermediate-purity concentrates
Desmopressin		Desmopressin
Multiple high-purity concentrates	1980s	
	1990s	
Multiple recombinant concentrates	19905	
	2000s	Single high-purity concentrate
Extended half-life variants	2010s	Single recombinant concentrate
Non-factor therapies Gene therapy	2020s	
	↓	

Denis et al, Blood 2021



Developing better therapies for treating VWD

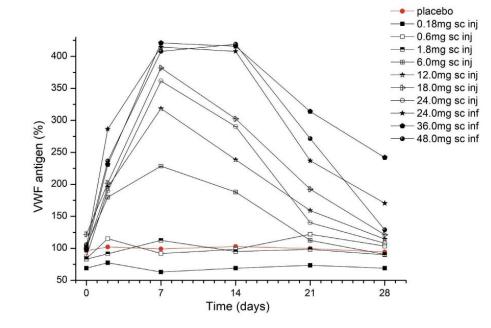
VWF lifecycle in normal individuals


Macrophages are liver cells that clear VWF

Developing longer-lasting VWF therapies for treating VWD

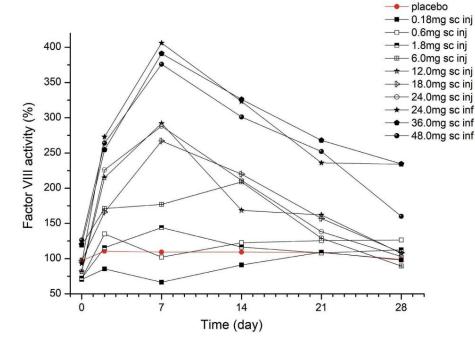
Rondoraptivon pegol (BT200) – pegylated aptamer to VWF

Adapted from Zhu S et al. J Thromb Haemost 2020


Synthetic molecule

- Long half-life 7-12 days
- **Subcutaneous**

Developed as a VWF inhibitor to use as an anticoagulant in stroke



In human studies – single dose of BT200 causes a 3-4 fold increase in <u>VWF</u> levels

Kovacevic et al Haematologica 2022

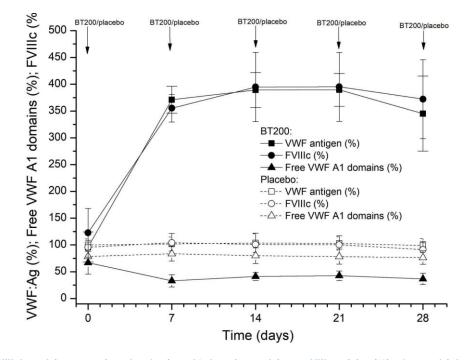

In human studies – BT200 causes a 3-4 fold increase in plasma <u>FVIII</u> levels

Figure 5. Factor VIII activity levels after single doses of BT200. Data are mean values without error bars for better visibility (n=6 for BT200 groups, n=20 for placebo). sc: subcutaneous; inj: injection; inf: infusion.

Kovacevic *et al* Haematologica 2022

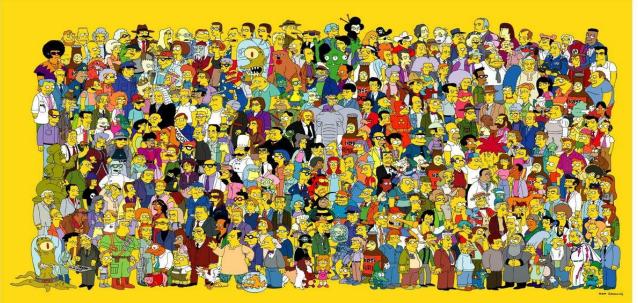
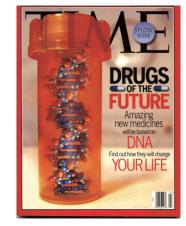

In human studies – multiple weekly doses of scut BT200

Figure 4. von Willebrand factor antigen levels, free A1-domains and factor VIII activity (%) after multiple doses of BT200. Subjects received 12 mg BT200 intravenously plus 12 mg subcutaneously on the first day and 12 mg subcutaneously weekly or placebo. Data are presented as mean values with 95% confidence intervals (n=6 for BT200 groups, n=20 for placebo). VWF: von Willebrand factor; Ag: antigen; FVIIIc: factor VIII activity.

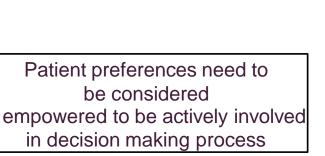
Kovacevic *et al* Haematologica 2022

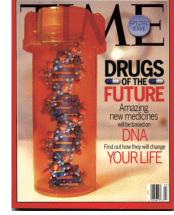
Patients with VWD are heterogeneous



One size treatment for VWD does not fit all ...

Personalized Medicine in VWD


- Treatment tailored specifically for individual patient
- Guideline recommendations
- Patient-specific aspects



Personalized Medicine in VWD

- Treatment tailored specifically for individual patient
- Guideline recommendations
- Patient-specific aspects

Prophylaxis in VWD

Prophylaxis in VWD

Significant clinical experience of primary and secondary prophylaxis in patients with severe hemophilia

• Data on prophylaxis in VWD are limited

Retrospective studies - VWD Prophylaxis Network (VWD PN)

- Enrolled 61 patients from 10 countries
- > 90% type 2 or type 3 VWD
- Median age starting prophy = 22.4 years / median duration 2.2 years
- Typical VWF dose ~ 50U/kg given 2-3 times per week
- Significant reduction in annualized bleeding rates (p<0.0001)
 - Prophylaxis was more effective in preventing some types of bleeding (e.g. hemarthrosis) than others (e.g. gastrointestinal bleeding)

ASH/ISTH/NHF/WFH guidelines - prophylaxis in VWD

Recommendation 1

In patients with VWD with a history of severe and frequent bleeds, the guideline panel *suggests* using long-term prophylaxis rather than no prophylaxis (conditional recommendation based on low certainty in the evidence of effects $\oplus \oplus \bigcirc \bigcirc$).

Remarks:

• Bleeding symptoms and the need for prophylaxis should be periodically assessed.

Prophylaxis in VWD

Recommendation 1

In patients with VWD with a history of severe and frequent bleeds, the guideline panel *suggests* using long-term prophylaxis rather than no prophylaxis (conditional recommendation based on low certainty in the evidence of effects $\oplus \oplus \bigcirc \bigcirc$).

Remarks:

• Bleeding symptoms and the need for prophylaxis should be periodically assessed.

Important unanswered questions:

- Selection of patients ?
- Optimal prophylaxis treatment regimen ?
- Personalized based upon PK?
- Pharma-economic analysis ?

Need for future adequately powered clinical trials

'What got us to where we are today is not going to get us to where we need to go tomorrow'

Blake Mycoskie

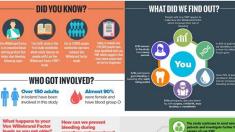
- Small studies inadequately powered
- Single centre
- Retrospective
- Non-randomized
- Hemophilia study end-points
- Limited science

'What got us to where we are today is not going to get us to where we need to go tomorrow'

Blake Mycoskie

- Large international collaborative studies
- VWD is NOT a rare disorder
- Subgroup stratification and multivariate analyses
- Prospective and randomized
- State-of-the-art science
- Multiomic strategies
- Not solely dependent upon pharma funding

'What got us to where we are today is not going to get us to where we need to go tomorrow'



Updates - 1

1

Low Von Willebrand in Ireland Cohort study

LoVIC Progress study

2024

Updates – 2

COMMENTARY

S blood advances

TO THE EDITOR:

von Willebrand disease: proposing definitions for future research

Nathan T. Connell,^{1,*} Paula D. James,^{2,*} Romina Brignardello-Petersen,³ Rezan Abdul-Kadir,⁴ Barbara Ameer,^{5,6} Alice Arapshian,⁷ Susie Couper,⁸ Jorge Di Paola,⁹ Jeroen Eikenboom,¹⁰ Nicolas Giraud,¹¹ Jean M. Grow,¹² Sandra Haberichter,¹³ Vicki Jacobs-Pratt,¹⁴ Barbara A. Konkle,^{15,16} Peter Kouides,¹⁷ Michael Laffan,¹⁸ Michelle Lavin,¹⁹ Frank W. G. Leebeek,²⁰ Claire McLintock,²¹ Simon McRae,²² Robert Montgomery,²³ Sarah H. O'Brien,²⁴ James S. O'Donnell,¹⁹ Margareth C. Ozelo,²⁵ Nikole Scappe,²⁶ Robert Sidonio Jr,²⁷ Alberto Tosetto,²⁸ Angela C. Weyand,²⁹ Mohamad A. Kalot,³⁰ Nedaa Husainat,³⁰ Reem A. Mustafa,³⁰ and Veronica H. Flood²³

'Severe' VWD ??????

Conclusions

- 1. Significant advances in understanding of VWD
- 2. Key clinical questions remain to be addressed in terms of diagnosis and management.
- 3. Unmet clinical need associated with significant global morbidity
- 4. VWD field has lagged behind recent advances in hemophilia
- 5. Recent ASH/ISTH/NHF/WFH guidelines highlight the issues
- 6. Finally, new treatments are in development

Acknowledgements

National Institutes of Health

wellcome^{trust}

Thank you

IRISH HAEMOPHILIA SOCIETY

Cumann Haemifile Na hEireann

Representing people living with haemophilia, von Willebrand's and other inherited bleeding disorders